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A probabilistic one-dimensional cellular automaton model by Domany and 
Kinzel is mapped into an inhomogeneous cellular automaton with the Boolean 
functions XOR and AND as transition rules. Wolfram's classification is 
recovered by varying the frequency of these two simple rules and by quenching 
or annealing the inhomogeneity. In particular, "class 4" is related to critical 
behavior in directed percolation. Also, the critical slowing down of second-order 
phase transitions is related to a stochastic version of the classical "halting 
problem" of computation theory. 
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1. I N T R O D U C T I O N  

Invented in 1948 by John von Neumann and Stanislaw U l a m ,  (14"21 cellular 
au tomata  consist of regular arrays of cells with a state (0 or 1, in this 
paper) at each cell. With an evolution law in discrete time, a cellular 
au tomaton is a fully discrete dynamical system. In the simplest one-dimen- 
sional case, the value a~ + 1 that a cell i takes at time t + 1 is determined by 
the values a~_ ~ and a~+ 1 assumed at time t by the adjacent neighboring 
cells. (For an introduction, see Ref. 8, and for reviews, see Ref. 4.) 
Wolfram/151 has proposed a classification of one-dimensional cellular 
automata  according to the possible evolutions of a chain initially filled at 
random with O's and l's. The classification involves four classes: 
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1, The chain becomes homogeneous (say, all O's). 

2. Appearence of simple localized time-periodic structures. 

3. Evolution leads to chaotic behavior. 

4. Evolution leads to complex localized structures. 

An exhaustive study of the simplest one-dimensional cellular automata 
(two states per cell, dependence on nearest neighbors only) shows they do 
not exhibit class 4 behavior (except perhaps by rule 193). This behavior is 
displayed only by automata that involve more states per cell or a wider 
neighborhood. It should be noted, however, that this conclusion affects 
deterministic cellular automata only. But Wolfram's classification, 
proposed for deterministic cellular automata, can also be used as a 
phenomenological characterization of probabilistic cellular automata, in 
which the transition rule is stochastic. Probabilistic cellular automata have 
recently been the object of intense investigations. 11'5'6'13~ 

2. D I R E C T E D  P E R C O L A T I O N  

Domany and Kinzel (see Refs. 3 and 10 for more details) have 
investigated in detail the connection between one-dimensional stochastic 
cellular automata and two-dimensional directed percolation. Indeed, the 
space-time graph of one-dimensional cellular automata (where successive 
chain configurations are plotted below each other) can be seen as a static 
two-dimensional percolation pattern. The arrow of time corresponds to the 
directedness of the percolation problem: row t corresponds to time step t. 
Domany and Kinzel have studied in particular a simple model in which the 
considered cell i takes the value 1 according to a conditional probability 
p(a;+ 1 ~___ 1 La I 1, a;+ 1), which depends on the present values (a;_ 1, al+ 1) of 
the adjacent neighbors. Since obviously 

P(al +1 =Ola~  i, al+l)  = 1 -P(al +1~- 1 I al._l, a~+l) 

the model is entirely described by the definition of the four P's for the four 
possible values of the neighbors (a~_~, a~+l). Domany and Kinzel have 
reduced the number of parameters from four to two by imposing a 
left-right symmetry and by requiring that the quiescent configuration 
(ai = 0 for all i) be absorbing--the system has no source. The dynamics is 
now entirely defined by the values of two parameters p~ and P2: 

P(111, 0 )=  P(110, 1)= Pl 

P ( l [ 1 , 1 ) = p 2  

P(1 IO, O ) = p o = O  
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The actual mapping between this cellular au tomaton and an instance 
of the directed percolation problem is achieved by considering the (two- 
dimensional) graph of the evolution of the (one-dimensional) cellular 
au tomaton and by the assignment (3"1~ 

Pl = PsPb 

P2 = P~Pb( 2 - -  P b )  

where Ps and Pb are the site and bond percolation probabilities, respec- 
tively. 

Domany  and Kinzel have observed a percolation transition between 
two phases (dry and wet). The phase is dry if the quiescent configuration 
(all zeros) is reached at some t for almost all initial chains. Otherwise the 
phase is wet, i.e., some initial l 's manage to percolate and "wet" chaotically 
the chain at time t. In Fig. 1 (adapted from Refs. 3 and 10) the wet phase is 
at the right of the thin line in the (p~, P2) space. Notice that in terms of 
Wolffam's classification, the dry and wet phases correspond to class 1 and 
3 cellular automata,  respectively.t~~ 

In this paper, we further simplify Dom any  and Kinzel's model by 
focusing on the line P2 = 1 -  p~ (the thick line in Fig. 1). Reducing the 
number of parameters to one yields an advantage: it endows the 

P2 

1.0 
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Pl  

Fig. 1. Phase diagram of the two-parameter model by Domany and KinzelJ 3,~~ The wet 
phase is at the right of the thin line. The present paper focuses on the line p2= 1 -p~. This 
line can be interpreted in terms of the XOR and AND Boolean functions. 
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probabilities Pl and P2 with a direct meaning in terms of the familiar 
Boolean functions AND and Exclusive OR (XOR). A cell will define its 
future state a~ +1 by taking the XOR (with probability pXOR) or the AND 
(with probability pAND) of the present values a~ 1 and a~+ t of its 
neighbors. This interpretation applies to Domany  and Kinzel's model (on 
the line P2 = 1 - p ~ ) ,  by equating pXOR with p~ and pAND= 1 --pXOg with 
P2- [For  example, P(0111) corresponds in Domany  and Kinzel's model to 
1 - pz, i.e., to p~ with the constraint pl + P2 = 1, and to pXOR in the present 
discussion. ] The functions AND and XOR return a I + L = 0 when the inputs 
a~_ 1 and a~+ 1 are both zero, and thus agree with Domany  and Kinzel's 
assignment P0 = 0. 

The line P2 = 1 - p~ crosses Domany  and Kinzel's transition line at a 
critical value p~. = 0.785 of p~ -- pXOR. We of course recover Domany  and 
Kinzel's findings in our measurements for pXOR= 0.77 ( < P c )  (Fig. 2) and 
for pXOR= 0.81 (>Pc)  (Fig. 3). These figures show the evolution of an 896- 
cell-long au tomaton  with circular boundary conditions. At t = 0 (top row), 
we distribute zeros and ones at random on the central interval of length 
300, and out of this interval zeros only. Since a~ + 1 depends on the present 
values a I_ 1 and al+ t of the neighbors and no t  on the present value a~ of the 

Fig. 2. Evolution with pXOR<p~ (annealed inhomogeneity). Each cell updates its state 
following the XOR rule with a probability pXO•= 0.77. The system dries up after 460 steps 
(class 1 behavior). 
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Fig. 3. Evolution with pXOR>p,. (annealed inhomogeneity). Each cell updates its state 
following the XOR rule with a probability pXOR =0.81. The system forms a chaotic pattern 
that extends in width as well as in the time direction (class 3 behavior). 

cons idered  cell itself, the a u t o m a t o n  splits into two noninteracting systems 
tha t  are in te rweaved  in a checke rboa rd  pa t t e rn  in the (i, t) lattice. To single 
out  one of these systems,  we assign at  t = 0 ones at  r a n d o m  on even sites 
only. We s top the exper iment  at the first occurrence  of  one of the following: 

1. The  system dries out. 

2. The  system reaches 10,000 generat ions .  

3. The pa t te rn ' s  width  has doub l ed  with respect  to the or iginal  value 
(300). 
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We observe that the system dries up below the critical point 
(pXOR < Pc), i.e., when the cells update their states by following the XOR 
rule with a frequency lower than 78.5 %. We have in this case an instance 
of a class 1 automaton (Fig. 2). In contrast, above the critical point, the l's 
propagate in the time direction, and the corresponding correlation length 
~lr diverges. What is more, the nonzero region becomes wider and wider, 
and the perpendicular correlation length 4• diverges as well (Fig. 3). The 
pattern of l's in the growing fan shows no order; they are distributed in a 
chaotic way. We thus have a class 3 automaton when the cells update their 
states by following the XOR rule with a frequency larger than 78.5%. 

3. CLASS 4 B E H A V I O R  A N D  C R I T I C A L  S L O W I N G  D O W N  

At precisely pXOR= p~., we ran 128 simulations with 10,000 evolution 
steps from various initial conditions. We observe that 29% of the runs dry 
up (as in Fig. 2), 53% show chaotic growth (as in Fig. 3), and 18% dis- 
play a peculiar behavior: the region occupied by the ceils in state 1 extends 
in the time direction but remains almost constant in width. The nonzero 
band shows oscillations of small amplitude around the original width. 
Figure 4 shows the first 1000 steps of one of these simulations. This 
behavior occurs in an immediate neighborhood of Pc. only. 

The patterns are complex, and localized; they are characteristic of class 
4 behavior. If our phenomenon is a second-order transition, then it exhibits 
critical slowing down, producing transients with unbounded lifetimes. The 
fate of an initial line evolving under the critical value pXOR = p,. is essentialy 
unpredictable. This is very similar to the halting problem in the theory of 
computation, according to which no algorithm can decide whether a given 
pair of program and initial data will halt or not. 112) However, it is an 
analogy rather than an identity, since, strictly speaking, the halting 
problem is defined for deterministic computations only. Wolfram's type 4 
behavior in our system seems to be related to critical behavior in directed 
percolation; it will require a great deal more work to explore this connec- 
tion. We can already observe, however, that classes 1, 3, and 4 can be 
obtained from one another by varying a single parameter (pXOR) in a 
model that involves two very simple rules. Furthermore, the data suggest 
that class 4 corresponds to a set of measure zero in this parameter space. 

4. Q U E N C H E D  I N H O M O G E N E O U S  A U T O M A T A  

By mixing with various probabilities two very simple rules, we recover 
three out of four of Wolfram's behaviors. The question remains if there is a 
way to combine the XOR and AND rules and provide a model for class 2 
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Fig. 4. The first 1000 steps of an evolution at the critical point pXOR=p~ (annealed 
inhomogeneity). Each cell updates its state following the XOR rule with the critical 
probability pXOR 0.785. The patterns are localized and complex (class 4 behavior). 

behavior. It turns out that the type 2 behavior can be obtained by simply 
quenching the inhomogeneity of the transition rule. In other words, we dis- 
tribute the rules XOR and A N D  once and for all at t = 0, and we quench 
or freeze this distribution for all later times. In this limit, the updating is 
disorderly in space, but it becomes purely deterministic. In contrast, when 
the distribution of rules is refreshed at each time step, as in the examples 
discussed above, the inhomogeneity actually disappears: it is wholly carried 
by the varying occupations of the neighborhood (a~ 1, a~+~). Since the 
inhomogeneity of the system has "melted" in the stochasticity of the 
dynamics, we call such systems annealed inhomogeneous cellular automata,  
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Fig. 5. Quenched inhomogeneity. Evolution when 80% of the cells follow the XOR rule at 
all times. The other cells update their state following the A N D  rule. The pattern becomes sim- 
ple, localized, and time-periodic (class 2 behavior). 

to contrast them with the quenched systems. As Fig. 5 shows, the patterns 
generated with quenched automata are typical of class 2: after a short 
transient, they become localized, but periodic and fairly simple. 

In two dimensions, the phenomena of the quenched distributions of 
XOR and AND rule becomes much richerJ 7t The second dimension allows 
for various feedback loops, and we obtain clusters of l's with enormous 
cycle times. The percolation structure of such clusters accounts for much of 
Kauffman's findings on Boolean networks. The motivation of using in two 
dimensions the AND and XOR rules stems from the fact that these rules 
are respectively canalizing (of forcing) 3 and noncanalizing (or nonforcing), 
according to an important characterization due to Kauffman. (9) 

3 In a canalizing rule, the value of at least one neighbor suffices to guarantee the next state of 
the cell, regardless of the other neighbor's values. In our model the XOR sites are nonfor- 
cing, as the knowledge of the output  is not "forced" by one of the inputs, whereas the next 
value at an AND site is forced by a 0 at any of the neighbors. 
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